The unit sum number of Baer rings
Authors
Abstract:
In this paper we prove that each element of any regular Baer ring is a sum of two units if no factor ring of R is isomorphic to Z_2 and we characterize regular Baer rings with unit sum numbers $omega$ and $infty$. Then as an application, we discuss the unit sum number of some classes of group rings.
similar resources
the unit sum number of baer rings
in this paper we prove that each element of any regular baer ring is a sum of two units if no factor ring of r is isomorphic to z_2 and we characterize regular baer rings with unit sum numbers $omega$ and $infty$. then as an application, we discuss the unit sum number of some classes of group rings.
full textThe unit sum number of discrete modules
In this paper, we show that every element of a discrete module is a sum of two units if and only if its endomorphism ring has no factor ring isomorphic to $Z_{2}$. We also characterize unit sum number equal to two for the endomorphism ring of quasi-discrete modules with finite exchange property.
full textthe unit sum number of discrete modules
in this paper, we show that every element of a discrete module is a sum of two units if and only if its endomorphism ring has no factor ring isomorphic to $z_{2}$. we also characterize unit sum number equal to two for the endomorphism ring of quasi-discrete modules with finite exchange property.
full textLocally Compact Baer Rings
Locally direct sums [W, Definition 3.15] appeared naturally in classification results for topological rings (see, e.g.,[K2], [S1], [S2], [S3], [U1]). We give here a result (Theorem 3) for locally compact Baer rings by using of locally direct sums. 1. Conventions and definitions All topological rings are assumed associative and Hausdorff. The subring generated by a subset A of a ring R is denote...
full textA Generalization of Baer Rings
A ringR is called generalized right Baer if for any non-empty subset S of R, the right annihilator rR(S ) is generated by an idempotent for some positive integer n. Generalized Baer rings are special cases of generalized PP rings and a generalization of Baer rings. In this paper, many properties of these rings are studied and some characterizations of von Neumann regular rings and PP rings are ...
full textGeneralized Baer rings
In [15], Kaplansky introduced Baer rings as rings in which every right (left) annihilator ideal is generated by an idempotent. According to Clark [9], a ring R is called quasi-Baer if the right annihilator of every right ideal is generated (as a right ideal) by an idempotent. Further works on quasi-Baer rings appear in [4, 6, 17]. Recently, Birkenmeier et al. [8] called a ring R to be a right (...
full textMy Resources
Journal title
volume 42 issue 2
pages 427- 434
publication date 2016-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023